Saskia Baltrusch

Heliomare The Netherlands

A change of perspective

From adapting working environments towards wearing a passive trunk exoskeleton

SPEXOR

Spinal Exoskeletal Robot for Low Back Pain Prevention and Vocational Reintegration

Low Back Pain

Affecting 60-80% of people at some point in their lifetime

High economic burden

Occupational health problem

work-related risk factors for low-back pain

Mechanical and aerobic loading

(Waddell & Burton, 2001; Lambeek et al. 2011; Wynne-Jones et al., 2014; Coenen et al., 2014; Griffith et al., 2012)

Background

Need for prevention

Interventions focus on reducing biomechanical risk factors

Problems:

Ergonomic re-design Inefficient working Effect sizes are low

(Faber et al., 2009; Ferguson et al. 2002; Whitfield et al., 2014; van Dieën et al., 1999)

Limitations of ergonomic re-design

SPEXOR

to support workers with low-back pain in vocational

reintegration

Benchmark testing

Laevo (Intespring, Delft, NL)

Design improvements:

- Possibility to disengage the device
- 2. Improved versatility needed
- 3. More support needed
- 4. Improved comfort

Further developments

Further developments ottopock.

SPEXOR

Recruitment

- 24 participants
- Average age: 44
- Different occupations
- Two main groups: KLM/Mitsubishi

Evaluation of the passive exoskeleton

- **1**. Biomechanical testing
- Effect of the exoskeleton on metabolic 2. costs
- Effect of the exoskeleton on functional 3. performance
- Questionnaires to assess Self-Efficacy of 4. workers with LBP with and without exoskeleton

Biomechanical testing

Biomechanical testing

Static bending

Supporting moment

Peak support: 50Nm

Biomechanical testing

Static bending

Lumbar flexion

Compression forces

Muscle activity

Compression forces

The passive SPEXOR exoskeleton reduces back muscle activity and lumbar flexion by providing a peak support of 50Nm.

Effect on Metabolic Costs

The passive SPEXOR exoskeleton reduces metabolic costs during lifting, hence preventing high aerobic load and fatigue and consequently lowering the risk of getting low back pain.

T6.3 Functional Capacity Testing

Effect on Functional Performance

Objective

performance

SPEXOR

Subjective performance

Very easy

Very difficult

「「大」」を見たたい。

*

<u>ب</u>

Ĭ

R

*

ſ₁_r X ki

Effect on Functional Performance

SPEXOR

160

140

-20

-40

Z

N

Perceived Task Difficulty

SPEXOR

SPEXOR

Effect on Functional Performance

Effect on Functional performance

The passive SPEXOR exoskeleton supports lifting and static postures, users do not feel hindered by the device and discomfort in the lower back is reduced.

User satisfaction

How would you grade the device?

Would you consider this device for daily use?

User satisfaction

Category		Median	Interquartile Range	VAS scale
Adjustability	Donning and Doffing	1.9	0.4-4.3	0=very easy
				10=very difficult
	Length Adjustment	1.3	0.5-2.7	0=very easy
				10=very difficult
Dense of				0=not restricted
Range of		1.4	0.7-2.3	10=heavily
Motion				restricted
Efficacy	Reduction of back loading	3.9	1.9-6.9	0=high reduction
				10=no reduction
	Support of tasks	4.6	1.3-7.7	0=high support
				10=no support
	Interference with tasks	2	0.9-3.3	0=no interference
				10=high
				interference

User satisfaction

Weight and Dimension

The passive SPEXOR exoskeleton resolved problems that were encountered with previous devices, such as interference with tasks, discomfort and restricted range of motion.

General comfort could be improved by reducing the weight and dimension of the exoskeleton.

Support level of the Spexor exoskeleton could be improved.

T6.5 Evaluation Satisfaction

Effect on Self-Efficacy

Modified Spinal Func

 Lift a box weighing 25 kg from the floor onto a workbench.

Go through the pictures quickly and don't spend too much time on a question. Your first impression is often the best.

SPEXOR

Effect on Self-efficacy

The passive SPEXOR exoskeleton has the potential to increase self-efficacy in people with recurrent low back pain.

T6.4 Usability/Field Testing

Conclusion

Benchmarking

- 1. Possibility to disengage the device
- 2. Improved versatility needed
- 3. More support needed
- 4. Improved comfort

SPEX

Contact

Saskia Baltrusch | s.baltrusch@heliomare.nl