FACULTY OF BEHAVIORAL AND MANAGEMENT SCIENCES DEPARTMENT OF COGNITIVE PSYCHOLOGY AND ERGONOMICS

UNIVERSITY OF DEVENDE TEAM COMMUNICATION PATTERNS IN CRITICAL SITUATIONS PROF. DR. JAN MAARTEN SCHRAAGEN

J.M.C.SCHRAAGEN@UTWENTE.NL

WHAT DID WE DO?

• Live observations of 40 pediatric cardiac surgery cases in clinical setting

- Multi-method
- Trained human factors
 observers

Schraagen, J.M.C. et al., (2010). Assessing and improving teamwork in cardiac surgery. *Quality and Safety in Healthcare*, 19: e29, 1-6.

HOW DID WE MAKE SENSE OF WHAT IS GOING ON HERE (OVER THE YEARS)?

- 1. 2010-2011: correlational analyses over all data obtained (questionnaires, observations, teamwork ratings, patient outcomes)
 - a) Schraagen, J.M.C. et al., (2010). Assessing and improving teamwork in cardiac surgery. *Quality and Safety in Healthcare*, 19: e29, 1-6.
 - b) Schraagen et al. (2011). A prospective study of paediatric cardiac surgical microsystems: Assessing the relationships between non-routine events, teamwork and patient outcomes. Br Med J, 20, 599-603
- 2. 2011: detailed analysis of four surgical procedures, controlled for complexity and patient outcome (2x2 matrix)
 - a) Schraagen, J.M.C. (2011). Dealing with unforeseen complexity in the OR: The role of heedful interrelating in medical teams. Theoretical Issues in *Ergonomics Science*, *12(3)*, 256-272.
- 3. 2015: Social Network Analysis of all team communication, with processes being contingent upon phase in the surgical procedure
 - a) Barth, S., Schraagen, J.M.C., & Schmettow, M. (2015). Network measures for characterizing team adaptation processes. *Ergonomics*, 58(8), 1287-1302.
 - b) Schraagen, J.M.C. (2015). Resilience and networks. In: 6th REA symposium, 22-06-2015 25-06-2015, Lisbon.
- 4. 2019: Relational Event Analysis of team communication patterns
 - a) Van den Oever & Schraagen (2019). Team communication patterns in critical situations. Paper presented at the International Conference on Naturalistic Decision Making, San Francisco, CA, June 23, 2019.

CORRELATIONAL ANALYSES: SOME SURPRISING FINDINGS¹

- No association between teamwork and outcome
 - In fact, we found an inverted U-curve showing first increased teamwork by surgeons as patient outcomes worsened, then decreased teamwork as patient outcomes continued to deteriorate
- No association between teamwork and non-routine events
 - However, during cardiopulmonary bypass: significant correlation (*r*=0.66, *p*<.01) between surgical decision making and number of NREs (the more NREs, the better the decision making)
- Mental and physical preparation <u>beforehand</u> was <u>not</u> predictive of patient outcome; questionnaire immediately <u>afterwards</u> on unexpected events and team processes predicted 30% of the variance in 30-day postoperative outcome

¹ Schraagen et al. (2011). A prospective study of paediatric cardiac surgical microsystems: Assessing the relationships between non-routine events, teamwork and patient outcomes. Br Med J, 20, 599-603

WHAT HAVE WE LEARNED SO FAR?

- Law of Fluency might explain the inverted U-curve:
 - First, teams extend gracefully by employing their team resources
 - However, as demands increase, they run the risk of saturation, and team processes decrease in quality
- However, 'teamwork' was rated very coarsely using vague, high-level constructs, such as 'leadership', 'situation awareness', 'decision making', etc.
- Also, 'teamwork' was not seen as a dynamic construct, whose underlying processes can change and adapt to the demands of the situation
- Hence, we need to look at team processes in more detail, using real-time measures

PROCESS FLOW IN PCS DURING THE VARIOUS EPOCHS

Epoch	Process flow	Domain
1	Patient in surgical holding area. Pre- operative events and medication. Patient transported to OR	Transport to OR
2	Patient in OR. Induction of anesthesia, insertion of lines. Preparing for surgery	Pre-surgery/Anesth. induction
3	Incision. Desection. Canulation	Surgery/pre-bypass
4	Go on cardiopulmonary bypass (CPB). Identification of structure. Surgical repair	Surgery/bypass
5	Off CPB. Heparine reversed. Hemostasis	Surgery/post bypass
6	Chest closed. Prepare for move and update ICU. Team leaves with patient to ICU	Transport to ICU
7	<u>Arrival at ICU</u> . Nurses take over. Anesthetist/surgeon inform ICU attending	Handoff

UNIVERSITY OF TWENTE.

EXAMPLE OF EPOCHS AND CRITICAL TRANSITION PERIODS

Epoch		2	,	3		4	4)
Time	8:15	9:51	9:52	10:27	10:28	12:33	12:34	13:40
(total)								
Time		9:03	10:08	10:09	11:29	11:30	13:06	
(passage								
1/2)								
Time		9:27	9:59	10:18	10:58	12:01	12:49	
(passage								
1/4)								

SCALE-FREE NETWORK STRUCTURE OF MEDICAL TEAM

Node degree distribution

Schraagen, J.M.C. (2015). Resilience and networks. In: 6th REA symposium, 22-06-2015 - 25-06-2015, Lisbon. Schraagen, J.M.C., & Post, W.M. (2014). Characterizing naval team readiness through social network analysis. Proceedings of the Human Factors and Ergonomics Society 58th Annual Meeting (pp. 325-329), Chicago, II., October 27-31, 2014.

RESULTS ON COMPLEXITY OF PROCEDURES (MEDIAN SPLIT)

- More complex procedures:
 - Have flatter communication structures, are less hierarchical
 - Show higher levels of reciprocity

"If the first surgeon is too busy, I'll take over the communication with the rest of the team" Assisting surgeon

Barth, S., Schraagen, J.M.C., & Schmettow, M. (2015). Network measures for characterizing team adaptation processes. *Ergonomics*, *58*(8), 1287-1302.

Relational event models

Van den Oever, F. & Schraagen, J.M.C. (2019). Team communication patterns in critical situations. Paper presented at the International Conference on Naturalistic Decision Making, San Francisco, CA, June 23, 2019.

Effects

RESULTS RELATIONAL EVENT ANALYSIS

- Surgical team showed few changes in communication patterns:
 - But does change when more extreme situations are chosen (3 most critical vs. 3 least critical)
 - Changes with 8-member team as well (right panel)

Similar analyses done with Apollo 13 Mission Control team and Air France 447 team

David, L.Z., & Schraagen, J.M.C. (2018). Analysing communication dynamics at the transaction level: The Case of Air France Flight 447. *Cognition, Technology & Work, 20*(4), 637-649.

CONCLUSIONS

- Findings indicate that teams adapt communication patterns in critical situations.
- They still adhere to institutional roles, closed-loop communication, and information seeking behavior in both critical and non-critical situations.
- However, they decentralize communication structures in critical situations.

BACK TO THE EXAMPLE OF STUDYING A SURGICAL TEAM AT WORK

- Telephone call was a non-routine event
- Anesthesist was caught in a double-bind: both answering the phone and taking the cardioplegia line
- Team members were very busy with their own coordination issues:
 - For 25 seconds, S1 and P1 were solving diminishing rate of return problem
 - Attention management: no one noticed A1 with phone, nor did A1 notify other team members (did he assess the workload of his fellow team members?)
 - S1 was simultaneously coordinating with S2 and N1
 - Scale-free network structure with S1 as single hub can be overloaded (in this case, S2 did not take over)

