Challenges for modeling multi-modal team coordination dynamics

Travis J. Wiltshire, Ph.D.

Human Factors NL Jaarcongres 2019, November 28, 2019 Soesterberg, NL

This work by Travis J. Wiltshire is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License 2019. Not for commercial use. Approved for redistribution. Attribution required.

Overview

- 1. Challenges
- 2. Overview of Team coordination dynamics
- 3. Some examples of my work examining forms and functions of coordination

10 Challenges for Modeling Team Coordination Dynamics

- Challenge 1: Making sense of the team coordination dynamics literature
- Challenge 2: Detecting important functions of social coordination in multiple modalities and contexts
- Challenge 3: What should we manipulate to determine the function of certain forms of coordination?
- Challenge 4: Issues with our models of coordination
- Challenge 5: Aggregate vs. continuous measures of coordination
- Challenge 6: How do we know we have observed meaningful change in coordination?
- Challenge 7: When do we maintain/emphasize idiographic information vs. nomothetic?
- Challenge 8: How do we know what time scales and time points are important?
- Challenge 9: Methods for modeling coordination in groups > 2
- Challenge 10: How can we use all of this to augment team interactions?

- A form of multi-scale mutual information exchange between interlocutors (Oullier & Kelso, 2009)
- Effective (collaborative) team interactions require:
 - Coordination of behavior and knowledge
 - Across spatial and temporal scales
 - Both intra- and *inter-individually*
- Social phenomena manifest across individuals':
 - physiology, bodily movements, dialog acts, and technological systems

- <u>The ways in which components and processes of a system change together over</u> <u>time</u> (Butner et al, 2014)
- Can occur intra- and inter- personally
 - Referred to in different ways(forms): alignment, synchronization, co-regulation, entrainment, coupling, and more
- Observed in many modalities and contexts
- Knowledge of the functionality is limited

Team Coordination Dynamics (Forms)

Butler, 2011

Time

B

• **Dynamical systems** are:

- Comprised by a set of reciprocally <u>interacting</u> components (system)
- Hierarchically and nested structures (complex)
- Change over time (dynamic)
 - <u>Coordination changes (</u>relative strength, and can breakdown)
- Reciprocal influence with influence the environment (open)
 - We can in influence coordination

Team interaction data is complex

Challenge 1: Making sense of the team coordination dynamics literature

Examples from (mostly) my own work

Modalities, Methods, Form & Function

NASA Moonbase Alpha Task

- Meteorite damaged moonbase, must work together figure out how to fix all components
- Allotted 25 minutes of 'oxygen' to complete task
- Complex, dynamic, timedependent, necessitates collaboration
- No predefined sequence for how to solve
- Tools are major task constraint

Team Performance

- Rescaled combination of three variables:
 - (a) the total **time** taken to restore life support (0-25 minutes),
 - (b) the total **percentage of oxygen** restored (0-100%),
 - (c) a ratio of completed **object repairs** to the total possible repairs (0-25; only for teams that restored zero oxygen).
- Each team got a score from 0 100
 - Also used grouping variable for performance

Movement coordination at certain time scales predicts CPS performance

Modality: Bodily movements extracted using video-frame differencing

Methods: Cross-wavelet coherence, surrogate/virtual pairs analyses, growth curve analysis

Form: Bodily movement coordination emerges at a level greater than expected due only to chance and task demands at **2s time scales and lower**

Function: Teams with high **in-phase** coordination at 1s time scale performed better

Changes in Coordination

• Over duration of the task, the average coordinate across scales changes and is moderated by task performance.

Time Period

Changes in coordinated communication patterns relate to CPS performance

- Modality: Semantic content of speech (CPS processes)
- **Method:** <u>Sliding window entropy</u> can be used to identify transition points in team communications
 - Entropy is an information theoretic quantification of order in the system
- **Form:** General measures of order disorder in communication states
- **Function:** Separates distinct phases of collaborative cognition (based on distribution of communication states)

 Lower average levels of entropy at transition points significantly predicted CPS performance (more ordered transitions)

Cognitive Science (2017) 1–39 Cognitive Science Society, Inc. All rights reserved. ISSN: 0364-0213 print/1551-6709 online DOI: 10.1111/cogs.12.482

> Problem-Solving Phase Transitions During Team Collaboration

Travis J. Wiltshire, ab Jonathan E. Butner, Stephen M. Fiore

Code Time Series

Behaviors can drive (dynamically cause) behavior and physiology of others

- **Modalities:** Behavior, skin conductance, and RSA during a conflict interaction between mothers and daughters
- Method: <u>Convergent cross mapping</u> a method for detecting 'causality' in complex systems
- **Form:** Unidirectional driving/coupling
- **Function:** Mothers of self-injuring teens drove their daughters behavioral and physiological trajectories

Relevant to individual performance and teamwork

Case i: Bidirectional coupling

Case ii: Unidirectional coupling

Example 1:

 $X \iff Y$

Example 2: Complex mode

Sugihara et al., 2012

Evaluating Emotional and Biological Sensitivity to Maternal Behavior Among Self-Injuring and Depressed Adolescent **Girls Using Nonlinear Dynamics**

Clinical Psychological Science @ The Author(s) 2017 Reprints and permission sagepub.com/journalsPermissic DOI: 10.1177/2167702617692861 www.psychologicalscience.org/CPS SAGE

Sheila E. Crowell¹, Jonathan E. Butner¹, Travis J. Wiltshire¹, Ascher K. Munion¹, Mona Yaptangco¹, and Theodore P. Beauchaine² University of Utah and ²The Ohio State University

Table 2. MCCM Analyses Showing Directional Effects From Mother to Adolescent or Adolescent to Mother Behavior or Physiology

Group	Variable	p value	Embedding dimension	Proportion of replication of <i>p</i>
	Behavior outcomes			
Control	TeenBeh → MomBeh	.41 ^a	3	1.00
	MomBeh → TeenBeh	.54 ^a	2	.86
Depressed	TeenBeh → MomBeh	.45ª	3	.90
	MomBeh → TeenBeh	.04*	5	.17
Self-injuring	TeenBeh → MomBeh	.37ª	2	.72
	MomBeh → TeenBeh	.00	6	.42
	Electrodermal outcomes			
Control	TeenBeh → MomEDA	.43ª	3	.80
	MomBeh \rightarrow TeenEDA	.38ª	2	.97
Depressed	TeenBeh → MomEDA	.36ª	3	.76
	MomBeh \rightarrow TeenEDA	.45	5	.86
Self-injuring	TeenBeh → MomEDA	.23ª	2	1.00
	MomBeh \rightarrow TeenEDA	.01**	6	.41
	respiratory sinus arrhythmia outcomes			
Control	TeenBeh → MomRSA	.15ª	3	.36
	MomBeh → TeenRSA	.16ª	2	.83
Depressed	TeenBeh → MomRSA	.85ª	3	.98
	MomBeh → TeenRSA	18	5	.50
Self-injuring	TeenBeh \rightarrow MomRSA	.08 ^a	2	.79
	MomBeh → TeenRSA	.01**	6	.84

Note: Beh = observed behavior during conflict; EDA = electrodermal activity; Mom = mother; RSA = respiratory sinus arrhythmia; Teen = adolescent daughter. ^aHypothesized nonsignificant result.

 $*p \leq .05, **p \leq .01.$

Multimodal coordination predicts collaborative processes A Multidisciplinary Journal Cognitive Science 43 (2019) e12787

- **Modalities:** Movements, speech rate, and changes in user interface
- Method: multidimensional recurrence quantification analysis (mdRQA), mixed effects modeling
- Form: Regularity of them temporal matching between multiple signals
- **Function:** Less systemic regularity predicts collaborative processes of constructing shared knowledge as well as negotiation/coordination.

COGNITIVE SCIENCE

© 2019 Cognitive Science Society, Inc. All rights reserved. ISSN: 1551-6709 online DOI: 10.1111/cogs.12787

Beyond Dyadic Coordination: Multimodal Behavioral Irregularity in Triads Predicts Facets of Collaborative Problem Solving

Mary Jean Amon, Hana Vrzakova, Sidney K. D'Mello

Team Coordination Dynamics Recap

• Mutli-scale

- Coordination occurs **and spans multiple modalities** and certain **time scales** in those might have particular functions
- Multi-methodological
 - There are many methods we can use to quantify coordination
- Coordination can have different **forms** and it can change over time
- The **function** of coordination can be examined as:
 - A predictor of task performance (outcomes)
 - A comparison of the levels of coordination between conditions/contexts

Want to investigate teamwork dynamics with me and my colleagues?

4 year - PhD position in Cognitive Science, Complex Systems, and Team Dynamics Tilburg University

4 year - PhD-position Field Research in Team Coordination and Wearable Technology Eindhoven Technical University

Application DUE December 1, 2019

****Masters degree required
Email me or come chat for more details:
t.j.wilthshire@uvt.nl

Thanks to my collaborators!

Contact me: t.j.wiltshire@uvt.nl

Acknowledgement: This work was supported by the Velux Foundations and the Carlsberg Foundation.

THE VELUX FOUNDATIONS

CARL§BERG FOUNDATION

Thanks!

