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Visualizing uncertainty
Towards a better understandiung of weather forecasts

Uncertainty visualizations are increasingly used in communications to the general 
public. A well-known example is the weather forecast. Rather than providing an 
exact temperature value, weather forecasts often show the range in which the 
temperature will lie. But uncertainty visualizations are also deployed in graphical 
forecasts that are used for decision-making in many other different areas like 
agriculture, flood management, health care, and finance. Visualization appears to be 
an intuitive way to communicate uncertainty. In principle, uncertainty visualizations 
enable users to make better decisions by enhancing their awareness of the 
inherent uncertainty in the data. However, in practice many people (even experts) 
frequently misunderstand both the concept of uncertainty and its visualizations. 
We are currently investigating how the visual form and width of the graphical 
representation of uncertainty ranges affect how people interpret the underlying 
uncertainty distribution.  
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The need for uncertainty visualization
It is generally assumed that people appreciate 
uncertainty visualizations and use them to make 
their decisions. For weather forecasts, it has indeed 
been observed that most people infer uncertainty 
into forecasts anyway (even when it is not provided), 
and prefer forecasts that explicitly express 
uncertainty. Research has also shown that including 
uncertainty estimates in weather (and hydrological) 
forecasts increases trust and can in principle provide 
a better understanding of the possible outcomes and 
the amount of uncertainty in the given situation, 
thereby allowing people to make better decisions 
(Joslyn & LeClerc, 2013). Carefully designed visual 
representations can indeed successfully convey 
uncertainty information to both experts and non-
experts (Nadav-Greenberg, Joslyn & Taing, 2008). 
However, the advantage of the availability of 
uncertainty estimates depends critically on how they 
are communicated (Ibrekk & Morgan, 1987). 
Communicating forecast uncertainty in an intuitive 
way so that the information is easily perceived and 
correctly interpreted still remains a challenge, 
especially when the information is intended for the 
general public (Tak, Toet & Van Erp, 2014; 2015). As a 
part of our ongoing work on the optimization of 
visualization techniques we are therefore 
investigating how different aspects of uncertainty 
visualizations affect the interpretations by non-
experts. 

Ways to visualize uncertainty
Before explaining the challenges in this field we 
first discus the different ways in which uncertainty 
can be visualized. There are roughly three different 
ways to visualize uncertainty: (1) by varying the 
graphical properties of the visualization, (2) by 
adding uncertainty information to the visualization, 
and (3) by animating the visualization. 
The first approach deploys techniques to vary the 
graphical properties of depicted entities, such as 
size, blur, color saturation, texture and transparency 
(Figure 1). For example, blurring or degradation of 

Figure 1. Different graphical properties that can be used to 
visualize uncertainty in data (from MacEachren, Roth, O’Brien et 
al., 2012).
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the data has an intuitive relation with uncertainty: 
the harder it is to see or recognize something, the 
more uncertain it appears. However, blurring or 
degradation can also be interpreted as poor 
visualization quality.

The second approach is to explicitly add uncertainty 
information to a visualization, such as glyphs 
(graphical elements that can convey a number of 
variables through variations in their size, shape, 
orientation, texture, and color), geometry, labels, 
numbers or icons. For example, positional 
uncertainty can be indicated by overlaying a glyph, 
the size of which becomes larger the more uncertain 
the location is (e.g., Figure 2). Geometric techniques 
include contour lines and isosurfaces (i.e., surfaces 
of a constant value of e.g. pressure, temperature, 
velocity, density). Also, textual or numerical 
information about the magnitude of uncertainty 
can be added to the visualization. Adding graphical 
representations of uncertainty information to a 
data visualization may result in data obscuration 
(symbols may be plotted over and cover other 
relevant information) and user distraction. This may 
increase the user’s response time, as it may require 
more cognitive effort to interpret the data. 

Finally, animation of the visual data representation 
(e.g., turning symbols on and off at a certain rate or 
letting them jitter around a fixed position) can be 
used to indicate uncertainty. However, flickering or 
jittering symbols can significantly reduce the 
visibility of other important image details. Also, 
most users typically find the use of blinking and 
flicker annoying.

(Mis)Understanding uncertainty visualizations
As stated before, many people (even experts) frequently 
misunderstand visual representations of uncertainty. A 
notorious example of the misunderstanding of a graphical 
uncertainty representation is the deterministic (and not 
probabilistic as intended) interpretation of the well-
known ‘Cone of Uncertainty’ graphic issued by both the 
US National Hurricane Center (NHC) and the media to 
communicate hurricane risk to the public prior to landfall 
(Figure 3). The main elements of this graphic are a black 
line representing the predicted path of the hurricane 
center, centered on a white ‘cone’ representing the 
potential geographic range of the track. Despite the 
attempt of the forecast community to make a user-
friendly product this type of hurricane-warning graphics 
is misinterpreted by a large part of the public. Although 
the track line only represents the predicted (potential) 
track of a hurricane center, the general public typically 
fails to appreciate both the uncertainty about it or the 
statistical meaning of the wider ‘cone’ of uncertainty 
about its projected course. The black line leads many to 
overestimate the certainty of the projected track. The 
white cone is often incorrectly interpreted as the extent 
of the hurricane, its intensity, or the potential swath of 
destruction (Broad, Leiserowitz, Weinkle et al., 2007). As 
a result, people often fail to understand that the hurricane 
will potentially affect a much larger area than just the 
cone depicting the uncertainty about the track of the eye 
of the storm. People wrongly assume that only areas 
along the track line are at risk (over distances up to the 
boundary of the cone), while areas outside the cone will 
not be impacted. Thus, people often do not feel at risk 
when they do not live near the track line or outside the 
cone’s boundaries. Another source of confusion is the fact 
that the white cone has been obtained by thresholding 

Figure 2. The red area represents the possible location of a person in a building based on previous sensor registrations. Less likely posi-
tions are plotted as more transparent and less saturated. The possibility to find the person at a given location decreases as the red area 
increases. 
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the actual overall spatial probability distribution, 
resulting in a loss of information (the variance in 
probabilities over the white area is no longer available). It 
has been observed that this may cause an overestimation 
of the probability along the centerline, even by experts 
(Kirlik, 2007). Sometimes an ensemble of predictions 
from different weather models (the data that is actually 
used to construct the cone) is presented to the public as 
a ‘spaghetti plot’ (Figure 4). Although this representation 
intuitively conveys the notion of uncertainty (there is no 
single ‘sure’ path) and thereby prevents overconfidence 
in a single predicted path, it has been found to confuse 
the public (‘I have no clue which one to believe’).

This example illustrates how uncertainty visualizations 
can easily be confusing or lead to misunderstandings. An 
important question is what causes the misinterpretation. 
In practice uncertainty visualizations are often shown 
without an explanation of the meaning of the uncertainty 
range (e.g., Figure 3 and Figure 5). In that case people 
need to rely on the visual form of the graphical 
representation to deduce the inherent uncertainty in the 
data. When no further information is given people 
sometimes assume a uniform probability distribution, 
both for graphical (Ibrekk & Morgan, 1987) and numerical 
(Rinne & Mazzocco, 2013) uncertainty representations. 
This means that people think that all values (including the 
extremes) in an uncertainty range are just as likely to 
occur as the mean value. It is evident that this will 
typically not be the case for most applications.
Especially now data science is gaining in interest in 
various sectors, there is a need for graphical conventions 
that unambiguously and intuitively convey the notion of 
probability as this will lead to data representations that 
are better and more easily comprehended by the end 
users. Research on visual uncertainty communication 
typically focuses on the development of new graphical 
uncertainty representations, with little attempt to 
evaluate their effectiveness for the end users. Also, there 
is still little empirical evidence to suggest that uncertainty 
visualization influences decision making in a robust and 
consistent manner (Deitrick & Edsall, 2006). It is often 
simply taken for granted that visual depictions of 
uncertainty will be useful for decision making. Until now 
only few studies investigated to what extent the users’ 
interpretation of uncertainty visualizations matches the 
actual uncertainty distribution of the underlying data. As 
a result we still do not have a comprehensive 
understanding of the parameters that influence successful 
uncertainty visualization. 

What model people exactly adopt to interpret different 
visualizations of uncertainty is not completely clear. 
Studies suggest that different visualizations (such as 
glyphs, color or grayscales) may result in different 
perceived models and may therefore induce a discrepancy 
between the model intended by the designer and the 

Figure 3. The (in)famous ‘Cone of Uncertainty’ graphic represen-
ting the area in which the path of the hurricane may lie.

Figure 4. Spaghetti plot showing an ensemble of predictions 
from different hurricane forecast models.

Figure 5. A visual representation of temperature forecast uncer-
tainty in the news. Visualizations for the general public (e.g., on 
TV or in newspapers) often provide no explicit information on 
the uncertainty that is shown and the viewer needs to adopt a 
model to interpret the underlying distribution.
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model that is actually applied by the viewer. Obviously, 
such discrepancies lead to incorrect interpretations, 
which may result in wrong decisions. 
In a study on the perception of point probability (e.g., by 
asking to judge the probability that a certain predicted 
value will occur) in graphs with visual uncertainty bands 
(Tak, Toet & Van Erp, 2014; see Figure 6) it was found that 
observers (when given no further explanation of the 
‘mathematical’ meaning of the uncertainty band) 
intuitively assume that the mean of the band is the most 
likely value to occur and that values further from the 
mean are less likely to occur. We also observed that a 
user’s numeracy (mathematical skills) affects this intuitive 
model. We therefore performed an additional study to 
investigate the effects of type and overall width of 
ensemble prediction visualizations (again presented 
without any additional information) on range probability 
estimates (e.g., by asking to judge the probability that the 
temperature will exceed a given value or be in the higher 
ranges: Tak, Toet & Van Erp, 2015). More specifically, we 
investigated (1) the nature of the model that people 
assume for visual uncertainty ranges when given no 
additional information, (2) whether the form of visual 
uncertainty ranges affects this assumed model, and (3) to 
what extent the assumed model depends on a participants’ 
numeracy.

Effects of graphical form and width on perceived 
range probability
Visualizations like those depicted in Figure 3 and Figure 5 
do not provide explicit information about, for example, 
the (range) probability of exceeding a temperature of 5 
degrees on a specific day. Taking into account the results 
of the aforementioned studies, we performed an 
experiment to investigate if users assume a consistent 
model to translate visualizations like the ones used in 
weather forecasts into probabilities. We asked 
participants to estimate a range probability by judging 
the probability that the afternoon temperature on a given 
day would exceed the temperature indicated by a red dot 
in a given uncertainty visualization (Figure 7).

Figure 8 shows the seven visualization forms that were 
investigated in this study. All seven different visualization 
types represented seven data points connected by a 
continuous black line (the center line). The data points 
represented the predicted temperature values for seven 
days ahead. The visualizations differed in the graphical 
representation of the uncertainty range, which was 
always symmetrical around the center line. To prevent 
stimulus familiarization the shape of the center line was 
varied slightly across stimuli by randomly distributing the 
seven predicted temperature values over the days of the 
week while keeping the width of the uncertainty interval 
fixed at each x-position (i.e., for any given day of the 
week, the y-value or uncertainty width was fixed, but the 
corresponding temperature value was randomly selected 

from the set of seven temperatures). This procedure 
yielded temperature curves with slightly varying shapes 
but similar and monotonously increasing uncertainty 
ranges.

Results
It appears that, in the absence of information about the 
uncertainty range, people apply a perceived model of the 
uncertainty distribution that closely resembles a Bell-
shaped distribution, as was also found in our study about 
interpretation of point probability (Tak, Toet & Van Erp, 
2014). In addition, we found that people typically have a 
bias for higher temperatures: they consistently estimate 
the probability of higher temperatures to be larger. The 
perceived probability of ‘extreme values’ (i.e., values far 
outside the uncertainty range) is affected by the 
visualization type, with denser fills leading to higher 
perceived probability of values within that area. Perceived 
probability also depends on the width of the uncertainty 
range: people judge the probability of values with the 
same relative distance to the centerline different for wide 
and for narrow uncertainty ranges (Figure 9). This means 
that observers take not only the relative but also the 
absolute distance to the center line into account and 
assume a model that does not simply scale with the width 
of the uncertainty range. Finally, the assumed model of 
the uncertainty distribution depends on a participant’s 
numeracy: people with low numeracy adopt a ‘flatter’ (all 
values are judged more or less equally probable) 
interpretation than those with high numeracy. In addition, 
those with low numeracy have a more pronounced bias 
than those with high numeracy (i.e., they more 
consistently judge higher values to be more likely). In 
practice this means that people with high numeracy have 

Figure 6. Stimulus from an experiment in which participants 
were asked to judge the probability that a certain material (co-
als or sandstone) was present at the location indicated by the 
red dot. The dashed lines represent the borders of the uncer-
tainty region (i.e., the transition area between both materials).
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a more realistic interpretation of uncertainty 
visualizations when they are presented without any 
further explanation. The cause of this effect (which has 
also been observed in several previous studies) still 
remains unclear. Hence, it remains a challenge to design 
uncertainty visualizations that will be correctly 
interpreted by all users, independent of their numeracy.

Conclusion
We find that the width and density of graphical 
representations of uncertainty ranges affect range 
probability estimates, and differently so for estimates 
relative to reference values in respectively the upper or 
lower part of an uncertainty range. We suspect that the 
effects found here are likely to hold for a wider range of 
visualizations. This may have practical implications for 
graphical forecasts used in different areas like agriculture, 
flood management, health care, finance, and many other 
decision-making contexts where incorrect inferences 
from range estimates may lead to suboptimal decisions. 
Our results suggest for instance that blurred or dashed 
(versus sharp) borders (like the ones shown in respectively 
Figure 10b and d) for the hurricane ‘Cone of Uncertainty’ 
may give the public a more realistic impression of the 
uncertainty in the hurricane’s path, since we found that 
these type of borders lead to people to judge values away 
from the center line to be more likely (i.e., they lead to a 
‘flatter’ interpretation of the underlying uncertainty 
distribution). 

Our results also imply that wide uncertainty intervals are 
in most cases probably not be the best choice for 
uncertainty visualizations, since people already interpret 
the underlying uncertainty distributions as wider than 
they actually are. In terms of the different visualization 
types it is unclear what the ‘best’ choice is. However, the 
effects of the density of the fill on the interpretation of 
extreme values should be taken into account when 

Figure 7. Screen shot of an uncertainty rating experiment.

Figure 8. The seven graphical uncertainty visualization types 
used in our experiment to represent temperature predictions.

Figure 9. The temperatures indicated by the red dots on Sunday 
and Wednesday are at equal relative distances from the center-
line (the predicted mean temperature curve) but are judged to 
have different probabilities.
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choosing a particular visualization, especially when these 
unlikely events are of the type ‘low probability, high 
impact’. Finally, the different results on the narrow and 
the wide uncertainty width show that perceived 
uncertainty does not necessarily map linearly to visual 
features, and that testing of the interpretation of 
uncertainty visualizations prior to dissemination is 
important, since the intentions of the designer do not 
necessarily match the interpretation of the viewer. 
In our previous research we used uncertainty graphs 
without actual underlying data. Using these graphs we 
established relations between the shape and width of the 
perceived uncertainty and the characteristics of the 
graphical uncertainty visualization. However, we also 
need to know how well perceived uncertainty corresponds 
to the actual uncertainty in data. We therefore started to 
experiment with uncertainty visualizations based on 
actual data for which the uncertainty is known, so that we 
can compare the perceived uncertainty with the actual 
uncertainty. 
Further research can provide knowledge on the nature of 
the effects found here, which may in turn lead to more 
effective presentations of uncertainty ranges to diverse 
populations in a variety of judgment and decision-making 
contexts. This may be of crucial value in high-risk 
environments where people have to decide quickly, or 
when decisions have a high impact.
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Figure 10. Graphs with different visualizations of uncertainty 
bands representing for instance the boundary between two dif-
ferent earth layers (e.g., sandstone and coal). 
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